Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_{3}Al_{2}Si_{3}O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_{3}Al_{2}Si_{3}O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_3Al_2Si_3O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_3Al_2Si_3O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_3Al_2Si_3O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_3Al_2Si_3O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_{3}Al_{2}Si_{3}O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_{3}Al_{2}Si_{3}O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_3Al_2Si_3O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_{3}Al_{2}Si_{3}O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_3Al_2Si_3O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_{3}Al_{2}Si_{3}O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_{3}Al_{2}Si_{3}O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_{3}Al_{2}Si_{3}O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_3Al_2Si_3O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_3Al_2Si_3O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_{3}Al_{2}Si_{3}O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_3Al_2Si_3O_{12}$	Mn	

Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ion have a charge of -2
- 2. Alkali metals ions have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the S_2 dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO₃?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so SiO_3 is -2 Therefore, Mn is +2

Mineral or group	Formula	lon	Charge on ion (List sign and numerical charge)
1. Stibnite	Fe ₂ O ₃	Fe	
2. Aragonite	CaCO ₃	Ca	
3. Vanadanite group	VO ₄ -3	V	
4,Tungstate group	WO ₄ ²⁻	W	
5. Chromate group	CrO ₄ -2	Cr	
6. Spinel	MgAl ₂ O ₄	Mg	
7.Manganite	MnO(OH)	Mn	
8. Azurite	Cu ₃ (CO ₃) ₂ (OH) ₂	Cu	
9. Celestite	SrSO ₄	Sr	
10. Spessartine	$Mn_{3}Al_{2}Si_{3}O_{12}$	Mn	